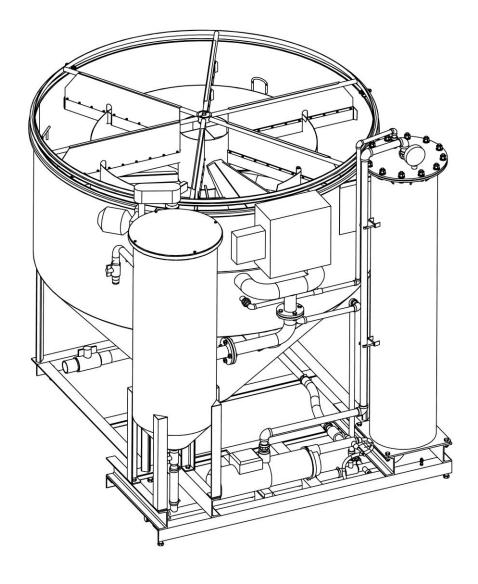
Ярославский завод промышленного водоочистного оборудования

ФДП-3

Флотатор двухступенчатый проточный


ISO 9001:2015

(4852) 74-12-03, 74-12-04

www.ecosvc.ru

ПАСПОРТ

ФДП-3.00.000 ПС

г. Ярославль

Введение

Настоящий Паспорт является основным документом, соблюдение требований и правил которого обеспечивает достижение заданных технических характеристик, а так же гарантирует эффективную и безопасную, для обслуживающего персонала и окружающей среды, работу установки.

^{*}Изображение на обложке, является элементом дизайна и не отражает внешний вид и комплектацию данного оборудования.

Содержание

1. Общие сведения	4
2. Основные технические характеристики	5
3. Состав и комплект поставки	7
4. Конструкция флотатора и его работа	8
5. Привязка	11
6. Монтаж	12
7. Подготовка к работе, запуск и обслуживание	13
8. Указания по безопасности	14
9. Электрооборудование	15
10. Автоматическое управление работой флотатора	16
11. Возможные неисправности и методы их устранения	17
12. Техническое обслуживание	18
13. Гарантийные обязательства	19
14. Свидетельство о приемке	20

Приложения:

- Флотатор «ФДП». Габаритный чертеж.
 Схема привязки флотатора «ФДП»
 Эксплуатационный журнал

1. Общие сведения

- 1.1. Флотатор двухступенчатый проточный «ФДП» ТУ 4859-003-47154242-2003 предназначен для флотационной очистки промышленных сточных вод предприятий: нефтехимии, мясомолочной промышленности, обслуживающих железнодорожный транспорт, масложировых производств, прачечных и других сточных вод, близких по составу загрязнений, от жиров, масел, взвешенных веществ, нефтепродуктов, органических примесей, ПАВ и других загрязнений.
- 1.2. Обязательным требованием при очистке флотатором сточных вод, содержащих жиры, ПАВы, другие органические загрязнения, является требование их дальнейшей обработки на сооружениях биологической очистки.
- 1.3. При очистке флотатором нефтесодержащих сточных вод рекомендуется проведение их последующей глубокой сорбционной очистки.
- 1.4. Очистка сточных вод флотатором может осуществляться с применением различных химических реагентов (коагулянтов, флокулянтов) или без таковых в зависимости от типа очищаемых стоков и требований, предъявляемых к качеству их очистки.
- 1.5. В зависимости от выбранной потребителем технологии обработки сточной воды, данный флотатор может быть применен совместно с оборудованием для очистки, использующим другие методы (например, электрокоагуляцию, гальванокоагуляцию, нейтрализацию и др.).
- 1.6. Флотатор предназначен для эксплуатации только в закрытых производственных помещениях категории «Д», класса по ПУЭ П-І, при температуре воздуха в помещении +5... +35 °C и влажности 65% (при температуре 20 °C).
- 1.7. На флотаторы серии «ФДП» имеются:
 - Экспертное заключение №9785 от 29.12.2011г.,
 - Сертификат соответствия №РОСС RU.AГ80.H02263 от 16.09.2014г.

2. Основные технические характеристики

2.1. Технические данные и характеристики флотаторов «ФДП» приведены в таблице 1:

Таблица 1

_	_	Значение	
Параметры и характеристики	Размерность	ФДП-3	
Производительность (номинальная)*	M^3/H	2,83,2	
Габаритные размеры в сборе	MM		
-длина		2010	
-ширина		1670	
-высота		1830	
Масса сухая, не более	КГ	530	
Напряжение питания	В	3Ф~380	
Установочная мощность	кВт	2,3	

Температура воды, подаваемой во флотатор, не должна превышать 40°C.

Для работы со сточной водой с температурой до 60°C флотатор под заказ комплектуется специальным насосным агрегатом.

Показатель pH очищаемой воды должен находиться в пределах 6,5-8,5 ед. В других случаях следует использовать флотатор, выполненный из нержавеющих материалов.

Рекомендуемый режим эксплуатации флотатора – не более 16 часов в сутки.

2.2. Рекомендуемые химические реагенты для очистки сточных вод.

Для очистки нефте- и жиросодержащих сточных вод рекомендуется применять следующие реагенты:

- коагулянты соли алюминия III, железа II;
- флокулянты катионного либо анионного типа.

Решения по использованию реагентов для очистки конкретных типов сточных вод на флотаторах «ФДП» следует принимать на основании технологических исследований натурных стоков с экспериментальным подбором типов и доз реагентов.

Не рекомендуется применение нерастворимых и малорастворимых химреагентов (суспензий), либо реагентов, образующих нерастворимые соединения при взаимодействии со сточной водой.

2.3. Степень очистки на флотаторах «ФДП» зависит от типа, состава и свойств сточных вод, применяемой технологии очистки.

Показатели очистки сточных вод на флотаторах «ФДП» следует определять экспериментально на основании технологических исследований натурных стоков при разработке технологии очистки; при этом, номенклатура видов загрязнений может быть расширена по сравнению с указанной в таблице 2, а качественные показатели очищенного стока должны соответствовать требованиям контролирующих органов на месте эксплуатации продукции.

ООО НПФ «Экосервис»

ФДП-3

Показатели очистки основных типов сточных вод на флотаторах « Φ ДП» соответствуют указанным в таблице 2:

Таблица 2

Загрязнения	Допустимые концентрации загрязнений сточной воды на входе во флотатор, мг/л	Эффективность очистки, %, не менее
Взвешенные вещества	5000	90
Нефтепродукты	1000	96
Жиры	5000	90
ХПК	5000	60
БПКполн.	2500	60
ПАВ*	300	60

3. Состав и комплект поставки

3.1. Состав «ФДП» соответствует таблице 3:

Таблица 3

Поз.*	Наименование	Кол.	Примечание
1	Камера смешения	1	
2	Емкость флотатора	1	
3	Насосный агрегат	1	
4	Эжектор	1	
5	Сатуратор	1	Нерж. сталь
6	Скребковое колесо	1	
7	Мотор-редуктор	1	
8	Рама	1	
40, 41	Пульт с автоматической системой управления (Блок САУ-М7Е)	1	

^{*} Позиции по рис. 1.

3.2. Комплект поставки флотатора «ФДП» соответствует таблице 4:

Таблица 4

Комплект поставки включает:	Кол.
1. Флотатор «ФДП» в сборе	-1
2. Сигнализатор уровня САУ-М7Е	-1
3. Руководство по эксплуатации (паспорт)	-1
4. Паспорт на насосный агрегат	-1
5. Паспорт на мотор-редуктор	-1
6. Паспорт на блок САУ-М7Е	-1

Флотаторы «ФДП» дополнительно могут комплектоваться оборудованием для реагентной обработки стоков и прочим дополнительным оборудованием.

4. Конструкция флотатора и его работа

Принципиальная схема флотатора «ФДП» показана на рис. 1.

Конструкция флотатора включает камеру смешения 1, емкость 2, насосный агрегат 3 с эжектором 4, сатуратор вертикального исполнения 5, скребковое колесо 6, моторредуктор 7, служащий для привода скребкового колеса, раму 8, пульт управления 41 с блокам автоматики 40.

Емкость флотатора 2 содержит цилиндрический корпус, переходящий в нижней части в усеченный конус 9. Кольцевое пространство между корпусом 2 и цилиндрической емкостью 10, образуют первую камеру флотации **I**. Вторая камера флотации **II** образована цилиндрической емкостью 10 с плоским днищем.

Конусная часть 9 предназначена для отстаивания и сбора частиц тяжелых фракций загрязнений, оседающих в процессе движения сточной воды в первой камере флотации **I**. Внизу конусной части 9 расположена линия удаления осадка 12, в2, патрубок Г.

На наружной поверхности камеры смешения 1 имеется входной патрубок A с краном в1. На входе в емкость 2 имеется распределительный трубопровод 13.

Ниже трубопровода 13 в емкости 1 установлены сопла 29а,б, служащие для ввода водовоздушной смеси, поступающей из верхней части сатуратора 5 по трубопроводу 28, и смешения ее с исходной сточной водой, поступающей из трубопровода 13.

В первой камере флотации **I** с противоположной стороны трубопровода 13 расположен заборный патрубок с фильтром 25, предназначенный для подачи очищаемой воды во всасывающую линию 26 насосного агрегата 3.

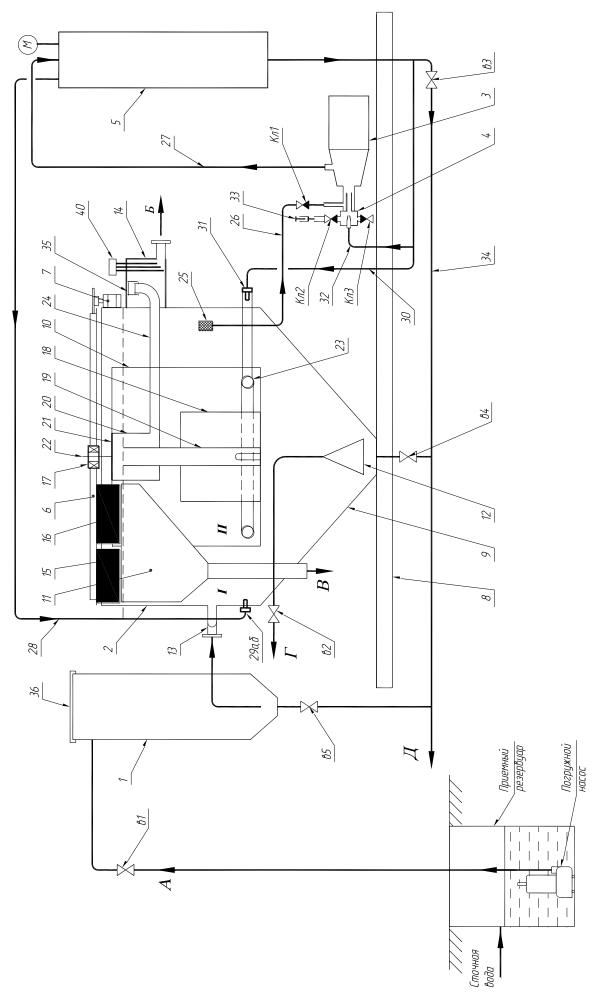
В центральной части второй камеры флотации **II** установлена вертикальная переливная труба 19 с оголовком 20. Переливная труба 19 обеспечивает переток очищенной воды из нижней части камеры **II** в оголовок 20 и далее по трубопроводу 24 в переливной карман 14.

В кармане 14 на выходе трубопровода 24 имеется подвижная вертикальная переливная воронка 35, служащая для регулирования уровня воды во флотационной емкости. Через данную воронку вода переливается в карман 14 и через патрубок Б поступает на сброс.

Во второй камере флотации **II** установлена затопленная цилиндрическая перегородка 18, обеспечивающая восходяще-нисходящее движение воды.

Первая **I** и вторая **II** камеры флотации имеют единый шламовый лоток 11 с патрубком В, через который отводится пенный продукт.

Струйный эжектор 4, совмещенный с насосным агрегатом 3, обеспечивает введение в очищаемую жидкость атмосферного воздуха (через клапан Кл2). Расход подаваемого воздуха регулируется дросселем 33. дополнительный клапан Кл3 на эжекторе 4 может быть использован для ввода раствора реагента для увеличении степени очистки воды.


Насосный агрегат 3 соединен напорным трубопроводом 27 с сатуратором 5.

Сатуратор 5 соединен трубопроводом 32 со струйным эжектором 4.

Водовоздушная смесь от сатуратора 5 подается в кольцевой перфорированный коллектор 23 второй камеры флотации **II** по трубопроводу 30 через сопло 31.

В верхней части емкости флотатора смонтирован скребковый шламоудалитель 6 с приводом 7, обслуживающий одновременно первую **I** и вторую **II** камеры флотации. Шламоудалитель 6 центрирован осью 22, установленной на крышке 21 оголовка 20. Ось 22 вращается в подшипнике 17.

Автоматическое управление работой флотатора осуществляется с помощью автоматического сигнализатора уровня САУ-М7Е и датчика уровней 40, установленного в переливном кармане 14. При этом включение насосного агрегата 3 и мотор-редуктора 7 происходит при повышении уровня воды в кармане 14 до среза верхнего электрода датчика 40, а отключение – при понижении уровня воды ниже конца нижнего электрода датчика 40 (см. рис. 3).

При использовании реагентной обработки стоков включение и отключение насосовдозаторов производится синхронно с насосом флотатора (см. электросхему рис. 2), либо с насосом подачи стоков.

Тип реагентов и точки их введения во флотатор принимается в соответствии с технологией очистки сточных вод.

Для опорожнения флотационной емкости и сатуратора служат краны в2, в3.

Описание работы флотатора.

Загрязненная вода из колодца либо накопительной емкости подается погружным насосом через патрубок А в камеру смешения 1.

Из камеры 1 стоки поступают по трубопроводу 13 в первую камеру флотации I.

Ниже трубопровода 13 в первую камеру флотации I по трубопроводу 28 через сопла 29а,б поступает водовоздушная смесь от сатуратора 5.

В первой камере флотации I очищаемая вода распределяется на 2 потока, огибающих емкость 10.

По мере движения воды от трубопровода 13 к заборному фильтру 25 в кольцевом пространстве происходит всплытие пузырьков воздуха вместе с прилипшими частицами загрязнений. Тяжелые частицы загрязнений оседают на дно первой камеры флотации **I** и собираются в конусе 9.

Предварительно очищенная вода через фильтр 25, трубопровод 26 и обратный клапан Кл1 поступает на насос 3 с установленным на входе эжектором 4. рабочий поток на эжектор 4 поступает по трубопроводу 32 от сатуратора 5.

В эжектор 4, через клапан Кл2 поступает атмосферный воздух. Клапан Кл3, установленный на эжекторе может быть использован для дополнительного вода растворов химреагентов.

Из насоса 3 по напорному трубопроводу 27 водовоздушная смесь подается в верхнюю часть сатуратора 5. Контроль давления в сатураторе осуществляется по манометру \mathbf{M} .

В сатураторе 5 при повышенном давлении $(0,5...0,6 \text{ M}\Pi a)$ происходит растворение воздуха в воде.

Такая рабочая смесь из нижней части сатуратора 5 поступает по трубопроводу 30 через сопло 31 в распределительный коллектор 23 второй камеры флотации.

На выходе из сопла 31 происходит сброс давления, и из воды выделяется растворенный воздух в виде мельчайших пузырьков, которые захватывают частицы загрязнений и выносят их на поверхность. Поднимаясь от коллектора 23 вверх, очищенная вода подходит над перегородкой 18 и, перетекая вниз, поступает чрез отверстия, расположенные в нижней части переливной трубы 19, внутрь этой трубы к оголовку 20, откуда поступает по трубопроводу 24 через воронку 37 в переливной карман 14 и далее через патрубок Б на сброс.

Часть воды с избытком воздуха поступает из верхней части сатуратора 5 по трубопроводу 28 в трубопровод 13 через сопло 29, и далее на первую камеру флотации **I**.

Образующийся в процессе очистки воды пенный продукт, содержащий частицы загрязнений, удаляется с поверхности воды вращающимся скребковым колесом (шламоудалителем) 6 с помощью установленных на нем скребков 15 и 16, сбрасывается в шламовый лоток 11 и отводится через патрубок В в специальную емкость.

Накапливающиеся в конусной части 9 первой камеры флотации I осадок периодически удаляется через кран в2 и патрубок Γ .

5. Привязка

- 5.1. Габаритный чертеж флотатора «ФДП» представлен в приложении 1.
- 5.2. Флотатор устанавливается в отдельном отапливаемом помещении с температурой воздуха не ниже +5 °C, защищенном от влаги. Помещение должно быть оборудовано вентиляцией и освещением.
 - 5.3. Схема привязки флотатора представлена в приложении 2.
- 5.3.1. Флотатор устанавливается на ровный бетонный пол или металлическую площадку. Крепление оборудования к полу не предусматривается.
- $5.3.2.\ \mathrm{C}$ передней стороны флотатора предусматривается зона обслуживания не менее $0.8\ \mathrm{M}.$
- 5.3.3. Подача сточной воды во флотатор осуществляется погружным либо надземным насосом, установленным непосредственно в приемном резервуаре сточной воды. Возможен вариант самотечной подачи стоков во флотатор.
- 5.3.4. Объем приемного резервуара сточной воды с размещенным в нем погружным насосом должен быть не менее 1.0 м^3 в зависимости от производительности флотатора. Минимальные размеры приемного резервуара в плане: 0.40×0.60 , высота 0.6 м.
- 5.3.5. При значительных колебания концентрации загрязнений перед подачей стоков на очистку устанавливается емкость-усреднитель. Объем усреднителя принимается по расчету.
- 5.3.6. Внешние трубопроводы должны иметь диаметры не менее диаметров соответствующих им патрубков (см. приложение 1). Уклоны трубопроводов принимаются по расчету.
- 5.4. Применение реагентной обработки сточной воды предусматривается при высоких исходных концентрациях загрязнений, либо повышенных требованиях к степени очистки. Доза раствора хим. реагента (реагентов) устанавливается при проведении пусконаладочных работ, либо на основании технологических исследований. Ввод реагента (реагентов) в сточную воду производится через штуцер на подающем трубопроводе камеры смешения, либо в эжектор насосного агрегата флотатора «ФДП» в зависимости от технологической схемы очистки воды.
- 5.5. Для очистки основных типов сточных вод ввод раствора коагулянта производится перед камерой смешения 1. При этом камера смешения 1 служит для осуществления процесса хлопьеобразования. Ввод флокулянта на выходе из камеры 1, либо в эжектор 4 через клапан Кл3.
- 5.5. Для сбора образующегося в процессе очистки флотошлама и осадка в непосредственной близости от флотатора следует установить емкость для уплотнения пены, либо накопитель шлама. Вывоза шлама из накопителя следует производить механизированным способом (спецавтотранспортом).

6. Монтаж

- 6.1. К монтажу флотатора «ФДП» следует приступать после завершения общестроительных и отделочных работ в помещении во избежание повреждения оборудования, попадания мусора и грязи в емкости и электронасосное оборудование.
- 6.2. Для перемещения и установки флотатора на рабочее место предусматривается грузоподъемное оборудование.
- 6.2.1. Перемещение оборудования флотатора производится либо краном за монтажные петли, либо погрузчиком.
- 6.3. Флотатор монтируется на специально подготовленное место (ровный бетонный пол, либо металлическую площадку) на общей жесткой раме и выставляется по уровню с помощью металлических подкладок. При этом отклонение от горизонтальности крайних точек должно составлять не более 5 мм. Правильность установки проверяется при заполнении емкости водой при приведении пусконаладочных работ.
- 6.4. При монтаже не допускается деформация колеса шламоудаления, т. к. это может привести к его нестабильной работе.
- 6.5 Присоединение внешних трубопроводов производится согласно приложению 2 и п. 4, 5 настоящего паспорта.
- 6.6. Подключение электропитания флотатора производится через отдельный автоматический выключатель ~ 3ф. 380 В.
- 6.7. Пульт управления флотатором допускается размещать отдельно на стене в удобном месте. В этом случае подключение электрооборудования флотатора к пульту производится специальными кабелями согласно п 9, 10 настоящего паспорта.
- 6.8. Подключение электропитания производится согласно правилам устройства электроустановок (ПУЭ). Флотатор подключить к контуру заземления.

7. Подготовка к работе, запуск и обслуживание

- 7.1. Перед запуском оборудование выдержать в теплом помещении в течение суток, во избежание образования конденсата и нарушения работы электрооборудования.
- 7.2. Перед запуском флотатора убедиться в соответствии произведенных монтажных работ требованиям настоящего паспорта.
- 7.3. Проверить надежность крепления основных узлов и агрегатов флотатора, исправность механизма шламоудаления флотатора.
 - 7.4. Закрыть сливные краны **в1 в5** (см. рис 1).
- 7.5. Залить флотатор чистой водой. В отдельных случаях допускается при первоначальном пуске флотатора заливать сточную воду.
- 7.6. Закрыть воздушный дроссель **33**. При работе без подачи реагентов клапан Кл3 должен быть заглушен.
- 7.7. Включить вводной выключатель на пульте управления. Проконтролировать включение индикатора «Сеть» и «Авт.» на блоке автоматического управления (рис.2). Нажатием кнопки «Стоп» перевести установку в ручной режим работы (индикатор «Автомат» при этом погаснет).
- 7.8. Кратковременным нажатием кнопки «Пуск» произвести контрольное включение насосного агрегата 3 и привода шламоудалителя 7: проверить правильность направления вращения крыльчатки (со стороны кожуха двигателя по часовой стрелке). При необходимости произвести переключение фаз питающей сети 380 В.

Раздельный пуск насоса **3** и привода шламоудалителя **7** осуществляется выключением соответствующего автомата в корпусе пульта управления.

Рис.2. Панель управления САУ-М7Е

- 7.9. Включить флотатор, нажатием кнопки «Пуск». Через 1...2 минуты после его запуска сатуратор 5 наполнится водой, и манометр покажет давление 0,52...0,55 МПа. При этом вода, насыщенная воздухом начнет поступать в коллектор 23 и сопло 31. В этот момент следует плавно открыть воздушный ротаметр 33 таким образом, чтобы давление в сатураторе установилось 0,48...0,5 МПа.
- 7.10. В течение 2...3-х последующих минут вода во флотаторе приобретает «молочный» цвет от выделяющихся пузырьков воздуха.
- 7.11. Включить подающий насос и отрегулировать его производительность в пределах 2,8...3,2 м³/ч.
- 7.12. Необходимость применения хим. реагента определяется значениями концентраций загрязнений сточных вод и требованиями к качеству очищенной воды.
- 7.13. Проконтролировать сброс образующегося пенного продукта скребками **15, 16** в шламовый лоток **1**.
- 7.14. При установившемся оптимальном режиме очистки перевести флотатор в автоматический режим, нажатием кнопки «Авт.».
- 7.15. Дальнейшее включение (отключение) насосного агрегата **3** и мотор-редуктора **7** осуществляется в автоматическом режиме при помощи блока автоматического управления (рис.4), в зависимости от количества стоков, подаваемых во флотатор погружным насосом. Отключение насосного агрегата **3** и мотор-редуктора **7** происходит через 4...5 минут после прекращения подачи воды во флотатор.
- 7.16. Сброс осадка из конуса **9** флотатора через кран **в2** производить ежедневно, не допуская его уплотнения.
- 7.17. Перед транспортировкой флотатора с целью перемещения на другое место эксплуатации, либо перед длительной остановкой следует слить воду через краны **в3 в5** и вывернуть сливную пробку насосного агрегата **3**.

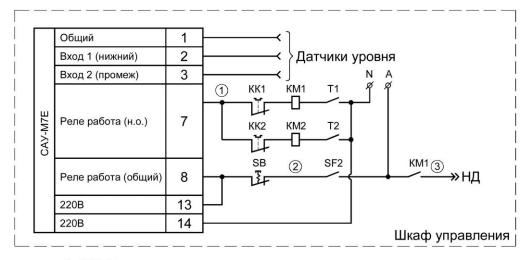
8. Указания по безопасности

Общие требования.

- 8.1. К работе с оборудованием допускается персонал не моложе 18 лет, ознакомленный с его устройством и имеющий допуск для работы на электроустановках напряжением 380 В.
 - 8.2 Обслуживающий персонал обязан:
 - знать устройство и назначение органов управления и настройки флотатора;
 - уметь определять неисправности;
 - содержать в чистоте рабочую зону;
 - иметь необходимые инструменты и материалы для обслуживания оборудования.
- 8.3. Запрещается эксплуатация оборудования в помещении с повышенной влажностью, согласно п.5.
- 8.4. Запрещается опираться и вставать на агрегаты и трубопроводы флотатора. Для обслуживания оборудования использовать специальные подставки.
- 8.5. Все соединения трубопроводов и шлангов должны быть надежными и герметичными во избежание утечек, разрывов и попадания воды на электрооборудование.
 - 8.6. Запрещается эксплуатация неисправного оборудования.

Электробезопасность.

- 8.7. Оборудование должно быть заземлено, подключение электропитания выполнить в соответствии с Правилами устройства электроустановок (ПУЭ).
 - 8.8. Все ремонтные работы производить только при отключенном электропитании.
- 8.9. После проведения монтажных или ремонтных работ к эксплуатации оборудования приступать только после проведения испытаний по электробезопасности (измерение: сопротивления между заземляющим болтом и любой металлической нетоковедущей частью оборудования; сопротивления изоляции между токоведущими цепями и корпусом оборудования; испытание изоляции токоведущих цепей на пробой).


8.10. Категорически запрещается эксплуатация оборудования без заземления.

9. Электрооборудование

Принципиальная электрическая схема флотатора «ФДП» представлена на рисунке 3. Электрическая схема флотатора обеспечивает в ручном и автоматическом режиме управление работой насосного агрегата 3 и мотор-редуктора 7.

В таблице 5 даны обозначения и наименования позиций рисунка 2.

Подключение электропитания выполнить через автоматический выключатель 16А.

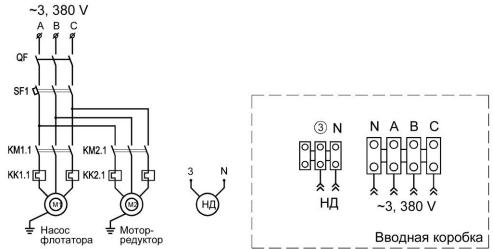
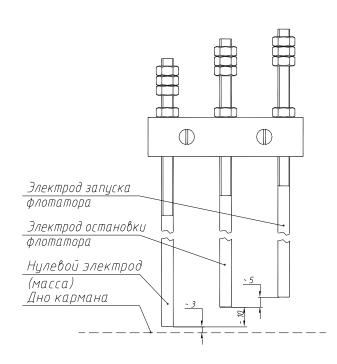


Рис. 3. Принципиальная электрическая схема флотатора.


Таблица 5

Поз. по рис. 3	Наименование позиций	Кол.	Прим.
QF	Вводной выключатель	1	
SF1	Автоматический выключатель 3-х полюсной	1	
SF2	Автоматический выключатель 1 полюсной	1	
KM1, KM2	Пускатель магнитный 380В	2	
KK1, KK2	Реле тепловое	2	
T1, T2	Тумблер	2	
SB	Кнопка «Аварийный стоп»	1	
САУ-М7	Блок автоматического управления	1	
M1	Электродвигатель насоса флотатора	1	
M2	Электродвигатель мотор-редуктора	1	
НД	Насос-дозатор	1	Не компл.

10. Автоматическое управление работой флотатора

Автоматическое управление насосом **3**, мотор-редуктором **7** обеспечивается автоматическим сигнализатором уровня САУ-М7Е и датчиком уровней **40**, установленным в переливном кармане **14**. Общий вид датчика уровней **40** показан на рис.4.

Автоматический запуск насосного агрегата 3 и мотор-редуктора 7 осуществляется

при достижении уровнем воды среза электрода верхнего уровня (рис.4).

Остановка насосного агрегата **3** и мотор-редуктора **7** происходит при отрыве уровня воды от среза электрода нижнего уровня.

Глубина погружения электродов настраивается следующим образом:

- нулевой электрод устанавливается
 выше донца кармана 14 на 3 мм;
- электрод нижнего уровня (остановка флотатора) выше донца кармана 14 на 10 мм;
- электрод верхнего уровня (запуск флотатора) выше нулевого электрода на

Рис. 4. Общий вид датчика уровней. 5 мм.

Автоматический запуск флотатора происходит через 1...1,5 минуты после начала поступления сточной воды в патрубок **A**. Остановка флотатора происходит через 4...5 минут после прекращения подачи сточной воды.

11. Возможные неисправности и методы их устранения

Таблица 6

№ ПП	Неисправность	Вероятная причина	Метод устранения
1.	Отсутствие пены на поверхности флотатора при работающем насосном агрегате 3	1.1. Закрыт, либо засорен воздушный ротаметр 33	Продуть ротаметр 33 , отрегулировать расход воздуха в соответствии. с п. 7.10.
		1.2. Засорение эжектора 4	Отсоединить трубку 32 , вывинтить сопло, прочистить эжектор.
2.	При запуске насосного агрегата 3 в автоматическом режиме не происходит подъем давления.	2.1. Засорение фильтра выпускного патрубка 25	Сбросить часть воды из 1-й камеры через кран в4, вывинтить фильтр (фильтры) 25, промыть.
		2.3. Неправильная регулировка воздушного ротаметра 33	Произвести запуск флотатора согласно разделу 7.
		2.4. Подсос воздуха через клапан Кл3	Заглушить клапан Кл3
3.	Повышенное давление в сатураторе 5 и отсутствие пузырьков воздуха в первой камере флотации I	Засорение сопла (сопел) 29	Сбросить часть воды из 1-й камеры через кран в4, Отсоединить трубопровод 28, прочистить сопла 29.
4.	При работе с подачей раствора реагента мала эффективность очистки	4.1. Неправильная регулировка подачи растворов хим. реагентов	Отрегулировать дозировку хим. реагентов в соответствии с технологией очистки воды
5.	При открытии крана в2 осадок не удаляется	Уплотнение осадка, либо засорение крана в2	Взмутить осадок, либо прочистить кран в2 тросом.

12. Техническое обслуживание

12.1 Ежедневное техническое обслуживание включает:

- Визуальный контроль состояния электропроводки и заземления; возможных утечек по стыкам, фланцам, резьбовым соединениям; контроль давления в сатураторе 5 по манометру **M**;
 - Контроль надежности крепления узлов и деталей флотатора его на раме и корпусе;
 - Контроль степени засорения фильтра 25;
- Проверку степени нагрева корпусов электродвигателей насосов контактным термометром; температура не должна превышать 80°С;
- Сброс осадка из конуса **9** через кран **в2** в конце рабочей смены (переполнение осадком конуса может привести к попаданию загрязнений в насосный агрегат **3** и выходу его из строя); в теплое время года загнивающий осадок может вызвать вторичное загрязнение сточных вод.

12.2. Ежемесячное техническое обслуживание включает:

- очистку электродов датчика уровней 40;
- проверку крепления оборудования на общей раме;
- промывку полостей первой **I** и второй **II** камер флотации, скребков **15, 16**, шламового кармана **11**, заборного фильтра **25**. Перед промывкой вода из флотатора сливается через кран **в4**, промывная вода сбрасывается через патрубок **Д** в приемный резервуар;
- 12.3. Техническое обслуживание электронасосного агрегата **3** и мотор-редуктора **7** проводить в соответствии с требованиями технических паспортов на эти изделия.
- 12.4. Перед запуском оборудования после длительных перерывов в работе, провести промывку первой **I** и второй **II** камер флотации и фильтра заборного патрубка **25**.
- 12.5. Наиболее изнашивающимися частями флотатора являются резиновые скребки **15**, **16**. При критическом состоянии скребков сброс шлама затруднен. При этом скребки следует заменить.

13. Гарантийные обязательства

- 14.1. Изготовитель гарантирует соответствие оборудования техническим характеристикам при условии соблюдения потребителем правил эксплуатации и технического обслуживания и монтажа. Гарантийный срок 12 месяцев со дня продажи оборудования, но не более 18 месяцев с момента отгрузки оборудования со склада изготовителя.
- 14.2. Гарантийный срок не распространяется на расходные материалы: цепи, ролики, подшипники опор, неметаллические элементы скребкового транспортера, а так же на изделия не производимые изготовителем, со сроком установленной гарантии менее 12 месяцев: электронасосный агрегат, мотор-редуктор, насос-дозатор. Ремонт или замена данных изделий производится в соответствии с установленным гарантийным сроком.
- 14.3. На оборудование, монтаж которого проводился персоналом, не прошедшим обучение в фирме «Экосервис» или ее официального представителя, либо с нарушением требований данного Паспорта, гарантийные обязательства не распространяются.
- 14.4. При эксплуатации оборудования с нарушением положений данного Паспорта и Приложений изготовитель оставляет за собой право отказать эксплуатирующей стороне в гарантийном обслуживании.
- 14.5. Изготовитель оставляет за собой право на внесение изменений в существующую конструкцию (с уведомлением покупателя), не ухудшающих заданные параметры установки.
- 14.6. Лицо, ответственное за эксплуатацию и обслуживание комплекса, должно регулярно заполнять рабочий журнал (Приложение 3) с указанием:
- перечня проведенных регламентных работ, ремонтов, замены комплектующих и узлов, обнаружения неисправностей и мер, принятых для их устранения;
 - даты проведения работ
 - ФИО и подпись, ответственного лица.
- 14.7. Отсутствие данного журнала, отсутствие записей в журнале о выявленных неисправностях и мерах принятых для их устранения, являются причиной для отказа в гарантийном обслуживании.
- 14.8. Отсутствие заводской маркировки, клейм производителя, шильдика с указанием серийного номера, несанкционированные изменения в конструкции оборудования являются причиной для отказа в гарантийном обслуживании.

Порядок действий в случае обнаружения недостатков в течение Гарантийного срока:

- В случае обнаружения в течение Гарантийного срока недостатков в работе оборудования, эксплуатирующая сторона в течение 3 (трех) рабочих дней с даты обнаружения таких недостатков направляет Изготовителю соответствующее письменное уведомление об этом, в котором указывает перечень выявленных недостатков.
- Изготовитель в течение 3 (трех) рабочих дней выдает рекомендации по устранению неисправностей, с учетом использования ЗИП, силами эксплуатирующей стороны.
- Если устранить неисправность по ранее выданным рекомендациям не возможно, то Поставщик принимает все меры по устранению неисправности в разумные сроки.

Гарантийный срок увеличивается на тот период времени, в течение которого Заказчик не мог эксплуатировать поставленный комплекс вследствие указанных в настоящем разделе недостатков.

14. Свидетельство о приёмке

Флотатор двухступенчатый проточный «ФДП-3» соответствует комплекту технической документации и техническим условиям ТУ 4859-003-4715242-2003 и признан годным к эксплуатации.

Дата выпуска	
_	
Представитель цеха-изготовителя	
Представитель ОТК	
Штамп ОТК	

Расхождения в описании и исполнении установки возможны ввиду технического усовершенствования конструкции.